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Progress in the development of palladium- and nickel-catalyzed
methods for cross-coupling alkyl electrophiles that bear � hydrogens
has increased significantly in recent years.1,2 For reactions of
secondary alkyl halides, nickel-based catalysts have proved to be
unusually effective.2a,c,3 Advances have also been described in the
development of chiral catalysts that achieve cross-couplings of
secondary electrophiles with high enantioselectivity, although to
date these have been limited to couplings of activated electrophiles
(e.g., allylic, benzylic, or R-halocarbonyl) with either organozinc
or organosilicon reagents.4,5 In this report, we expand upon the
scope of both reaction partners, specifically, we establish that a
chiral nickel catalyst can cross-couple certain unactiVated alkyl
electrophiles with organoboron compounds6 in good enantiomeric
excess (eq 1).

The conditions that we had employed for asymmetric Negishi
and Hiyama reactions were ineffective at cross-coupling 2-bromo-
3-phenylpropane with an alkyl-(9-BBN).4,5 We recently described
a method that achieves alkyl-alkyl couplings of secondary elec-
trophiles with organoboron reagents,3d and we were pleased to
determine that this catalyst can accomplish an asymmetric cross-
coupling with promising ee (58% ee; eq 2).

Optimization of this initial lead provided a method that achieves
the desired carbon-carbon bond formation in a stereoconvergent
process in very good ee and yield (89% ee, 85% yield; Table 1,
entry 1). From a practical point of view, it is noteworthy that both
of the catalyst components, Ni(cod)2 and (R,R)-1, are commercially
available. In the absence of the diamine, essentially no cross-
coupling occurs (entry 2). An array of related ligands in which the
aromatic ring is unsubstituted, para-substituted, or meta-substituted

furnishes slightly to modestly lower enantioselectivities and yields
(e.g., entries 3, 4, and 6), whereas the presence of a hindered mesityl
groupleads tonearly racemicproductand lessefficientcarbon-carbon
bond formation (entry 5). If the cross-coupling is conducted at room
temperature, rather than at -5 °C, a small erosion in yield is
observed (entry 7), and replacement of i-Pr2O with dioxane is
deleterious (entry 8).7 Finally, if half of the “standard” catalyst
loading is employed, the yield of the coupling is somewhat
diminished.

We have examined the scope of this asymmetric Suzuki cross-
coupling process with respect to the electrophile (Table 2). For alkyl
groups that range in steric demand from methyl to isopropyl, very
good ee is generally observed (e.g., entries 1-4). The presence of an
electron-rich aromatic group leads to higher ee than an electron-poor
substituent (entry 5 vs entry 6), and a hindered o-tolyl group is tolerated
(entry 7). It is noteworthy that these asymmetric Suzuki reactions of
unactivated alkyl bromides proceed under unusually mild conditions
(i.e., below room temperature).8,9

Our current hypothesis is that the chiral Ni/1 complex differentiates
between the two alkyl groups (CH2Ar vs alkyl in Table 2) of the
unactivated halide via a secondary interaction between the CH2Ar
substituent and the catalyst. Consistent with the suggestion that proper
positioning of the aromatic group is important for obtaining good ee,

Table 1. An Asymmetric Suzuki Reaction of an Unactivated Alkyl
Bromide: Effect of Reaction Parametersa

entry variation from the standard conditions ee (%) yield (%)

1 none 89 85
2 no (R,R)-1 – <2
3 (R,R)-3, instead of (R,R)-1 85 76
4 (R,R)-4, instead of (R,R)-1 88 66
5 (R,R)-5, instead of (R,R)-1 -6 46
6 (S,S)-6, instead of (R,R)-1 -80 72
7 rt, instead of 5 °C 87 76
8 dioxane at rt, instead of i-Pr2O at 5 °C 60 32
9 5% Ni(cod)2 and 6% (R,R)-1, instead of 10%/12% 89 70

a The yield was determined by GC versus a calibrated internal standard.
A negative ee value signifies that the opposite enantiomer of the product
was formed preferentially.
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bromides 7 and 8 undergo Suzuki cross-coupling with low enantiose-
lectivity under our standard conditions.10

Additional examples that illustrate the scope of this method for
asymmetric Suzuki reactions of unactivated alkyl halides are provided
in Table 3. Thus, a range of heteroatom-containing electrophiles and
alkylboranes serve as suitable cross-coupling partners (e.g., entries

2-7), although the reactions generally proceed in somewhat lower ee
than for less functionalized substrates.11,12

In summary, we have developed the first effective method for
asymmetric cross-couplings of unactiVated alkyl electrophiles, specif-
ically, a nickel-based catalyst for stereoconvergent Suzuki reactions
of homobenzylic bromides with alkylboranes. It is noteworthy that
there are no other examples of enantioselective Suzuki couplings of
alkyl electrophiles and that the catalyst components are commercially
available. Although the process has limitations, its discovery demon-
strates that unactivated alkyl electrophiles, a very important family of
coupling partners, can begin to be considered as potential substrates
for enantioselective cross-couplings. In view of the potential impact
of such reactions on organic synthesis, efforts to develop more versatile
catalysts are underway.
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Table 2. Asymmetric Suzuki Reactions of Unactivated Alkyl
Bromides: Variation of the Electrophile

a Isolated yield. All data are the average of two experiments.

Table 3. Asymmetric Suzuki Reactions of Unactivated Alkyl
Bromides

a Isolated yield. b Run at 5 °C. c Run at rt. All data are the average of
two experiments.
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